Instance-Based 'One-to-Some' Assignment of Similarity Measures to Attributes - (Short Paper)
نویسندگان
چکیده
Data quality is a key factor for economical success. It is usually defined as a set of properties of data, such as completeness, accessibility, relevance, and conciseness. The latter includes the absence of multiple representations for same real world objects. To avoid such duplicates, there is a wide range of commercial products and customized self-coded software. These programs can be quite expensive both in acquisition and maintenance. In particular, small and medium-sized companies cannot afford these tools. Moreover, it is difficult to set up and tune all necessary parameters in these programs. Recently, web-based applications for duplicate detection have emerged. However, they are not easy to integrate into the local IT landscape and require much manual configuration effort. With DAQS (Data Quality as a Service) we present a novel approach to support duplicate detection. The approach features (1) minimal required user interaction and (2) self-configuration for the provided input data. To this end, each data cleansing task is classified to find out which metadata is available. Next, similarity measures are automatically assigned to the provided records’ attributes and a duplicate detection process is carried out. In this paper we introduce a novel matching approach, called one-to-some or 1:k assignment, to assign similarity measures to attributes. We performed an extensive evaluation on a large training corpus and ten test datasets of address data and achieved promising results.
منابع مشابه
An Interval Assignment Problem with Multiple Attributes: A DEA-Based Approach
One of the basic combinatorial optimization problems is the assignment problem that deals with assigning jobs to individuals. In traditional assignment problems, n jobs usually assign to n individuals such that the total cost is minimized or the total profit is maximized. However, in numerous real-life applications, various attributes could be considered in assignment problems while data (obj...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملA Geometric View of Similarity Measures in Data Mining
The main objective of data mining is to acquire information from a set of data for prospect applications using a measure. The concerning issue is that one often has to deal with large scale data. Several dimensionality reduction techniques like various feature extraction methods have been developed to resolve the issue. However, the geometric view of the applied measure, as an additional consid...
متن کاملGraph Hybrid Summarization
One solution to process and analysis of massive graphs is summarization. Generating a high quality summary is the main challenge of graph summarization. In the aims of generating a summary with a better quality for a given attributed graph, both structural and attribute similarities must be considered. There are two measures named density and entropy to evaluate the quality of structural and at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011